3.228 \(\int (a+b \cos (c+d x))^2 (A+B \cos (c+d x)) \sec ^3(c+d x) \, dx\)

Optimal. Leaf size=80 \[ \frac {\left (a^2 A+4 a b B+2 A b^2\right ) \tanh ^{-1}(\sin (c+d x))}{2 d}+\frac {a^2 A \tan (c+d x) \sec (c+d x)}{2 d}+\frac {a (a B+2 A b) \tan (c+d x)}{d}+b^2 B x \]

[Out]

b^2*B*x+1/2*(A*a^2+2*A*b^2+4*B*a*b)*arctanh(sin(d*x+c))/d+a*(2*A*b+B*a)*tan(d*x+c)/d+1/2*a^2*A*sec(d*x+c)*tan(
d*x+c)/d

________________________________________________________________________________________

Rubi [A]  time = 0.20, antiderivative size = 80, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.129, Rules used = {2988, 3021, 2735, 3770} \[ \frac {\left (a^2 A+4 a b B+2 A b^2\right ) \tanh ^{-1}(\sin (c+d x))}{2 d}+\frac {a^2 A \tan (c+d x) \sec (c+d x)}{2 d}+\frac {a (a B+2 A b) \tan (c+d x)}{d}+b^2 B x \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Cos[c + d*x])^2*(A + B*Cos[c + d*x])*Sec[c + d*x]^3,x]

[Out]

b^2*B*x + ((a^2*A + 2*A*b^2 + 4*a*b*B)*ArcTanh[Sin[c + d*x]])/(2*d) + (a*(2*A*b + a*B)*Tan[c + d*x])/d + (a^2*
A*Sec[c + d*x]*Tan[c + d*x])/(2*d)

Rule 2735

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(b*x)/d
, x] - Dist[(b*c - a*d)/d, Int[1/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d
, 0]

Rule 2988

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^2*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.)
 + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[((B*c - A*d)*(b*c - a*d)^2*Cos[e + f*x]*(c + d*Sin[e + f*x])^(n + 1))/
(f*d^2*(n + 1)*(c^2 - d^2)), x] - Dist[1/(d^2*(n + 1)*(c^2 - d^2)), Int[(c + d*Sin[e + f*x])^(n + 1)*Simp[d*(n
 + 1)*(B*(b*c - a*d)^2 - A*d*(a^2*c + b^2*c - 2*a*b*d)) - ((B*c - A*d)*(a^2*d^2*(n + 2) + b^2*(c^2 + d^2*(n +
1))) + 2*a*b*d*(A*c*d*(n + 2) - B*(c^2 + d^2*(n + 1))))*Sin[e + f*x] - b^2*B*d*(n + 1)*(c^2 - d^2)*Sin[e + f*x
]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d
^2, 0] && LtQ[n, -1]

Rule 3021

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f
_.)*(x_)]^2), x_Symbol] :> -Simp[((A*b^2 - a*b*B + a^2*C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m +
 1)*(a^2 - b^2)), x] + Dist[1/(b*(m + 1)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(a*A - b*B + a*
C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e,
 f, A, B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin {align*} \int (a+b \cos (c+d x))^2 (A+B \cos (c+d x)) \sec ^3(c+d x) \, dx &=\frac {a^2 A \sec (c+d x) \tan (c+d x)}{2 d}-\frac {1}{2} \int \left (-2 a (2 A b+a B)-\left (a^2 A+2 A b^2+4 a b B\right ) \cos (c+d x)-2 b^2 B \cos ^2(c+d x)\right ) \sec ^2(c+d x) \, dx\\ &=\frac {a (2 A b+a B) \tan (c+d x)}{d}+\frac {a^2 A \sec (c+d x) \tan (c+d x)}{2 d}-\frac {1}{2} \int \left (-a^2 A-2 A b^2-4 a b B-2 b^2 B \cos (c+d x)\right ) \sec (c+d x) \, dx\\ &=b^2 B x+\frac {a (2 A b+a B) \tan (c+d x)}{d}+\frac {a^2 A \sec (c+d x) \tan (c+d x)}{2 d}-\frac {1}{2} \left (-a^2 A-2 A b^2-4 a b B\right ) \int \sec (c+d x) \, dx\\ &=b^2 B x+\frac {\left (a^2 A+2 A b^2+4 a b B\right ) \tanh ^{-1}(\sin (c+d x))}{2 d}+\frac {a (2 A b+a B) \tan (c+d x)}{d}+\frac {a^2 A \sec (c+d x) \tan (c+d x)}{2 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.27, size = 67, normalized size = 0.84 \[ \frac {\left (a^2 A+4 a b B+2 A b^2\right ) \tanh ^{-1}(\sin (c+d x))+a \tan (c+d x) (a A \sec (c+d x)+2 a B+4 A b)+2 b^2 B d x}{2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Cos[c + d*x])^2*(A + B*Cos[c + d*x])*Sec[c + d*x]^3,x]

[Out]

(2*b^2*B*d*x + (a^2*A + 2*A*b^2 + 4*a*b*B)*ArcTanh[Sin[c + d*x]] + a*(4*A*b + 2*a*B + a*A*Sec[c + d*x])*Tan[c
+ d*x])/(2*d)

________________________________________________________________________________________

fricas [A]  time = 0.61, size = 136, normalized size = 1.70 \[ \frac {4 \, B b^{2} d x \cos \left (d x + c\right )^{2} + {\left (A a^{2} + 4 \, B a b + 2 \, A b^{2}\right )} \cos \left (d x + c\right )^{2} \log \left (\sin \left (d x + c\right ) + 1\right ) - {\left (A a^{2} + 4 \, B a b + 2 \, A b^{2}\right )} \cos \left (d x + c\right )^{2} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \, {\left (A a^{2} + 2 \, {\left (B a^{2} + 2 \, A a b\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{4 \, d \cos \left (d x + c\right )^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^2*(A+B*cos(d*x+c))*sec(d*x+c)^3,x, algorithm="fricas")

[Out]

1/4*(4*B*b^2*d*x*cos(d*x + c)^2 + (A*a^2 + 4*B*a*b + 2*A*b^2)*cos(d*x + c)^2*log(sin(d*x + c) + 1) - (A*a^2 +
4*B*a*b + 2*A*b^2)*cos(d*x + c)^2*log(-sin(d*x + c) + 1) + 2*(A*a^2 + 2*(B*a^2 + 2*A*a*b)*cos(d*x + c))*sin(d*
x + c))/(d*cos(d*x + c)^2)

________________________________________________________________________________________

giac [B]  time = 0.52, size = 190, normalized size = 2.38 \[ \frac {2 \, {\left (d x + c\right )} B b^{2} + {\left (A a^{2} + 4 \, B a b + 2 \, A b^{2}\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right ) - {\left (A a^{2} + 4 \, B a b + 2 \, A b^{2}\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right ) + \frac {2 \, {\left (A a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 2 \, B a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 4 \, A a b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + A a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 2 \, B a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 4 \, A a b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{2}}}{2 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^2*(A+B*cos(d*x+c))*sec(d*x+c)^3,x, algorithm="giac")

[Out]

1/2*(2*(d*x + c)*B*b^2 + (A*a^2 + 4*B*a*b + 2*A*b^2)*log(abs(tan(1/2*d*x + 1/2*c) + 1)) - (A*a^2 + 4*B*a*b + 2
*A*b^2)*log(abs(tan(1/2*d*x + 1/2*c) - 1)) + 2*(A*a^2*tan(1/2*d*x + 1/2*c)^3 - 2*B*a^2*tan(1/2*d*x + 1/2*c)^3
- 4*A*a*b*tan(1/2*d*x + 1/2*c)^3 + A*a^2*tan(1/2*d*x + 1/2*c) + 2*B*a^2*tan(1/2*d*x + 1/2*c) + 4*A*a*b*tan(1/2
*d*x + 1/2*c))/(tan(1/2*d*x + 1/2*c)^2 - 1)^2)/d

________________________________________________________________________________________

maple [A]  time = 0.12, size = 133, normalized size = 1.66 \[ \frac {a^{2} A \sec \left (d x +c \right ) \tan \left (d x +c \right )}{2 d}+\frac {a^{2} A \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2 d}+\frac {B \,a^{2} \tan \left (d x +c \right )}{d}+\frac {2 A a b \tan \left (d x +c \right )}{d}+\frac {2 B a b \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{d}+\frac {A \,b^{2} \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{d}+b^{2} B x +\frac {b^{2} B c}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*cos(d*x+c))^2*(A+B*cos(d*x+c))*sec(d*x+c)^3,x)

[Out]

1/2*a^2*A*sec(d*x+c)*tan(d*x+c)/d+1/2/d*a^2*A*ln(sec(d*x+c)+tan(d*x+c))+1/d*B*a^2*tan(d*x+c)+2/d*A*a*b*tan(d*x
+c)+2/d*B*a*b*ln(sec(d*x+c)+tan(d*x+c))+1/d*A*b^2*ln(sec(d*x+c)+tan(d*x+c))+b^2*B*x+1/d*b^2*B*c

________________________________________________________________________________________

maxima [A]  time = 0.41, size = 140, normalized size = 1.75 \[ \frac {4 \, {\left (d x + c\right )} B b^{2} - A a^{2} {\left (\frac {2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 4 \, B a b {\left (\log \left (\sin \left (d x + c\right ) + 1\right ) - \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 2 \, A b^{2} {\left (\log \left (\sin \left (d x + c\right ) + 1\right ) - \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 4 \, B a^{2} \tan \left (d x + c\right ) + 8 \, A a b \tan \left (d x + c\right )}{4 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^2*(A+B*cos(d*x+c))*sec(d*x+c)^3,x, algorithm="maxima")

[Out]

1/4*(4*(d*x + c)*B*b^2 - A*a^2*(2*sin(d*x + c)/(sin(d*x + c)^2 - 1) - log(sin(d*x + c) + 1) + log(sin(d*x + c)
 - 1)) + 4*B*a*b*(log(sin(d*x + c) + 1) - log(sin(d*x + c) - 1)) + 2*A*b^2*(log(sin(d*x + c) + 1) - log(sin(d*
x + c) - 1)) + 4*B*a^2*tan(d*x + c) + 8*A*a*b*tan(d*x + c))/d

________________________________________________________________________________________

mupad [B]  time = 0.98, size = 176, normalized size = 2.20 \[ \frac {2\,\left (\frac {A\,a^2\,\mathrm {atanh}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{2}+A\,b^2\,\mathrm {atanh}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )+B\,b^2\,\mathrm {atan}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )+2\,B\,a\,b\,\mathrm {atanh}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )\right )}{d}+\frac {\frac {B\,a^2\,\sin \left (2\,c+2\,d\,x\right )}{2}+\frac {A\,a^2\,\sin \left (c+d\,x\right )}{2}+A\,a\,b\,\sin \left (2\,c+2\,d\,x\right )}{d\,\left (\frac {\cos \left (2\,c+2\,d\,x\right )}{2}+\frac {1}{2}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((A + B*cos(c + d*x))*(a + b*cos(c + d*x))^2)/cos(c + d*x)^3,x)

[Out]

(2*((A*a^2*atanh(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2)))/2 + A*b^2*atanh(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2)
) + B*b^2*atan(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2)) + 2*B*a*b*atanh(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2))))
/d + ((B*a^2*sin(2*c + 2*d*x))/2 + (A*a^2*sin(c + d*x))/2 + A*a*b*sin(2*c + 2*d*x))/(d*(cos(2*c + 2*d*x)/2 + 1
/2))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \left (A + B \cos {\left (c + d x \right )}\right ) \left (a + b \cos {\left (c + d x \right )}\right )^{2} \sec ^{3}{\left (c + d x \right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))**2*(A+B*cos(d*x+c))*sec(d*x+c)**3,x)

[Out]

Integral((A + B*cos(c + d*x))*(a + b*cos(c + d*x))**2*sec(c + d*x)**3, x)

________________________________________________________________________________________